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• Simulation and models to evaluate enhanced capacity

• The aim of this task is to evaluate existing tools for their 
suitability to assess and improve capacity utilization

• ”Capacity depends on the way it is utilised” (UIC 406)

• Timetabling and traffic control determine the way
capacity is utilised

Timetabling &
Traffic control

UIC 406
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• Traffic control

Optimisation models

Χ Deterministic –
assume full knowledge
of the present and the 
future

• Timetabling

Optimisation models

Robustness against
distrubances

Χ Resilience –
considering traffic
control actions
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Uncertainty in railway traffic
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Stochastic real-time traffic prediction

• Model is based on Bayesian networks (BN)

• Advanced data mining algorithms combined with the domain
knowledge

• Accurate modelling of uncertainy under presence of real time
infromation
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Advantages of BN model

• Model gives accurate and stable predictions over long 
horizons

• Integration of historical data with real time information

• Probability of delay of all events is continuously updated
as new information becomes available

• Distribution of a single, subset or complete set of events

• Most probable outcome
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Application of BN model

• Case study Stockholm -
Norrköping

• Model trained with
”Lupp” data

• Tested in a simulated
real time environment

• Stable predictions
within 1 min for 30 min 
ahead
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Disdvantage of BN model
• Train routes and train orders are assumed to be known for 

the whole duration of prediction horizon

• Historical data are interventional data!
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Disdvantage of BN model
• Train routes and train orders are assumed to be known for 

the whole duration of prediction horizon

• Historical data are interventional data!

? ?
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Stochastic prediction of dispatching actions

• Model based on Naive Bayesian classifier (NBC) 
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Stochastic prediction of dispatching actions

Wrong classification
13%
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Application of the models

Traffic prediction
BN

Control prediction
NBC

Independent tool for traffic prediction and information

Robust rescheduling

sc
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Timetable robustness

Timetable resilience

Stoch. Delay propagation
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Next steps

• Integration of the Bayesian network model for real-time
stochastic traffic prediction in a robust rescheduling framework

• Integration of Naive Bayesian clasifier in a realistic timetable
model for simultaneous testing of robustness and resilience

• Computing optimal robust and resilient timetables
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Thank you for your attention


